Deformed expression in the Drosophila central nervous system is controlled by an autoactivated intronic enhancer.

نویسندگان

  • L Lou
  • C Bergson
  • W McGinnis
چکیده

Deformed (Dfd) is a Drosophila homeotic selector gene required for normal development of maxillary segment morphology in the larval and adult head. Consistent with this function, Dfd transcripts are restricted to epidermal, mesodermal and neural cells in the embryonic mandibular and maxillary primordia. Previous studies have identified a far upstream element in Dfd sequences which functions as an epidermal-specific autoregulatory enhancer. In a search through 35 kb of Dfd sequences for additional transcriptional control elements, we have identified a 3.2 kb DNA fragment containing an enhancer that mimics the expression of Dfd in the subesophageal ganglion of the embryonic central nervous system. This Neural autoregulatory enhancer (NAE) maps in the large Dfd intron just upstream of the homeobox exon and requires Dfd protein function for its full activity. A 608 bp NAE subfragment retains regulatory function that is principally localized in the subesophageal ganglion. This small region of the Drosophila melanogaster genome contains numerous blocks of sequence conservation with a comparable region from the Dfd locus of D.hydei. A pair of conserved blocks of NAE sequence match a Dfd protein binding site in the epidermal autoregulatory element, while another conserved sequence motif is repeated multiple times within the 608 bp subelement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1.

Vertebrate Nodal-related factors play central roles in mesendoderm induction and left-right axis specification, but the mechanisms regulating their expression are largely unknown. We identify an element in Xnr1 intron 1 that is activated by activin and Vg1, autoactivated by Xnrs, and suppressed by ventral inducers like BMP4. Intron 1 contains three FAST binding sites on which FAST/Smad transcri...

متن کامل

2mit, an Intronic Gene of Drosophila melanogaster timeless2, Is Involved in Behavioral Plasticity

BACKGROUND Intronic genes represent ~6% of the total gene complement in Drosophila melanogaster and ~85% of them encode for proteins. We recently characterized the D. melanogaster timeless2 (tim2) gene, showing its active involvement in chromosomal stability and light synchronization of the adult circadian clock. The protein coding gene named 2mit maps on the 11(th) tim2 intron in the opposite ...

متن کامل

Combinatorial action of Grainyhead, Extradenticle and Notch in regulating Hox mediated apoptosis in Drosophila larval CNS

Hox mediated neuroblast apoptosis is a prevalent way to pattern larval central nervous system (CNS) by different Hox genes, but the mechanism of this apoptosis is not understood. Our studies with Abdominal-A (Abd-A) mediated larval neuroblast (pNB) apoptosis suggests that AbdA, its cofactor Extradenticle (Exd), a helix-loop-helix transcription factor Grainyhead (Grh), and Notch signaling transc...

متن کامل

ming is expressed in neuroblast sublineages and regulates gene expression in the Drosophila central nervous system.

Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast 'sublineages'), suggesting that neuroblast identity can be alter...

متن کامل

The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila.

The scalloped (sd) gene of Drosophila melanogaster was initially characterized by mutants affecting structures on the wing of the adult fly. The sequence of a cDNA clone of the gene reveals a predicted protein sequence homologous to that of a human transcriptional enhancer factor, TEF-1 (68% identity). The homology includes a sequence motif, the TEA domain, that was shown previously to be a DNA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 23 17  شماره 

صفحات  -

تاریخ انتشار 1995